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Roch15, Holly Root-Gutteridge16, Martin Šálek17,18,19, Grace Smith-Vidaurre20,21,22,
Ariana Strandburg-Peshkin23,24, Megan R. Warren13, Matthew Wijers25, Ricard
Marxer*1
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Abstract

The fundamental frequency (F0) is a key parameter for characterising structures in
vertebrate vocalisations, for instance defining vocal repertoires and their variations at
different biological scales (e.g . population dialects, individual signatures). However, the
task is too laborious to perform manually, and its automation is complex. Despite
significant advancements in the fields of speech and music for automatic F0 estimation,
similar progress in bioacoustics has been limited.

To address this gap, we compile and publish a benchmark dataset of over 250,000
calls from 14 taxa, each paired with ground truth F0 values. These vocalisations range
from infra-sounds to ultra-sounds, from high to low harmonicity, and some include
non-linear phenomena.

Testing different algorithms on these signals, we demonstrate the potential of neural
networks for F0 estimation, even for taxa not seen in training, or when trained without
labels. Also, to inform on the applicability of algorithms to analyse signals, we propose
spectral measurements of F0 quality which correlate well with performance.

While current performance results are not satisfying for all studied taxa, they
suggest that deep learning could bring a more generic and reliable bioacoustic F0
tracker, helping the community to analyse vocalisations via their F0 contours.

Keywords : Fundamental frequency (F0), vocalisation analysis, cross-species
dataset, deep learning

Introduction

To produce acoustic signals, vertebrates typically vibrate soft tissue structures within
their vocal apparatus (e.g . the laryngeal tissue for mammals, or the syringeal membrane
for birds). The frequency at which vocal organs oscillate, measured in Hertz, is called
the fundamental frequency or F0 [1, 2]. It is linked to the notion of pitch in human
psychoacoustics, which relates to the perception of frequency. However, not all
vocalisations result in vibration of the vocal apparatus, and such vocalisations are said
to be unvoiced.

Fundamental frequency (F0) is a principal feature in the description of acoustic
signals. In speech, F0 serves multiple purposes [3], from signalling speaker sex [4], to
providing a cue to conversational turn-taking [5], and has been studied by phoneticians
for its influence on interpretability of speech and song [6–8]. F0 is also widely used in
music applications [9–11], as the physical measurement of which note is being sung or
played by an instrument.

In bioacoustics, F0 can carry biologically meaningful information such as a cue for
body size [12,13] or age [14]. Additionally, within vocalisation, how the F0 evolves
through time (i.e. the F0 contour) is a widespread feature used in defining units of a
vocal repertoire [15], and can also hold community markers [16,17] or even information
on individuals’ identities [18–22].

It should be noted that the concept of F0 is only applicable to approximately
periodic sounds. Like in speech or music, some bioacoustic signals are imperfectly
periodic, in which case F0 may be hard to define or estimate, or aperiodic, in which case
there is no F0 to estimate (spectral metrics such as the centroid frequency may then be
more relevant to their description). For instance, these unvoiced vocalisations can be
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the /sh/ or /S/ phonemes in human speech, calls produced with the tongue and lips by
non-human primates [23], cetacean echolocation clicks [24], or ‘chaotic’ calls produced
via vocal organ vibration [25,26].

Task’s challenges

Biologically produced signals, even if periodic, do not always have an unambiguous
fundamental frequency [27]: influences such as nonlinear phenomena can occur such as
sub-harmonics or biphonation [25, 26, 28], yielding variations between and/or within the
signal’s cycles. This, coupled with changes in the recorded signal due to propagation or
interference with background noise (especially in outdoor far-field settings), make F0
estimation a challenging problem. Common mistakes include harmonic jumps (e.g .
confusion between the first overtone and the fundamental), or false positives (detecting
an F0 when its actually absent, either because the vocal organ isn’t active or because
the vocalisation is non-periodic).

Related works

F0 estimation in speech and music

Many ‘traditional’ methods for F0 estimation rely on auto-correlating an assumed
stationary signal segment to identify a period. More recently, deep neural networks have
been proposed instead. In this study, we compare a set of classic and recent algorithms
used in the Music Information Retrieval (MIR) and speech communities.

• PRAAT [29] (speech): after applying an auto-correlation to the signal waveform,
this algorithm assumes the first peak should correspond to the main cycle period
and indicate the F0. In PRAAT, the size of the auto-correlation window is three
periods of the pitch floor parameter, which was set to 27.5 Hz in our experiments
(to match that of CREPE1). The chosen window size would be problematic to
deal with rapid frequency sweeps or trills, but these were not encountered in the
present dataset.

• p-YIN [30] (speech and music): the original YIN alogrithm is also based on the
auto-correlation method, but with several modifications such as a parabolic
interpolation [31]. Then, p-YIN improves performance by storing multiple F0
candidates at each time frame, taking their probability into account to yield a
smoothed F0 contour.

• CREPE [32] (music): a neural network that convolves over waveforms. With its
classifier architecture, each output bin corresponds to a specific frequency,
predicting whether or not it corresponds to an active F0. The original model was
trained on 22 hours of synthesised and re-synthesised monophonic music of known
pitch and from varying instruments.

• PESTO [33] (music): a neural network that convolves over Constant-Q
Transforms (CQT), i.e. spectral representation with varying kernel sizes. This
model is self-supervised (trained without ground truth labels) based on objectives
of equivariance with respect to pitch shifts and invariance to noise addition. The
original model used here was trained on two hours of people singing Chinese pop
songs.

1infra-sonic sounds were pre-processed to be detectable despite this pitch floor (see Signal slow down
/ acceleration section)
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• BASIC-pitch [34] (music): is a convolutional neural network trained to detect
multiple active pitches (e.g . to deal with multiple instruments playing
simultaneously). From a CQT representation, the model yields three matrices
with the same number of time frames as the input. The first matrix predicts if a
note is starting at a time frame (note onset), the second denotes if a note is being
active (with a resolution of one bin per semi-tone), and the third denotes if a
pitch is active (similarly to the latter but this time with a resolution of three bins
per semi-tone). To use BASIC-pitch as a monophonic F0 estimator, for each
frame, we took the frequency bin of the third matrix with the highest confidence
as the predicted F0.

F0 estimation in bioacoustics

Bioacoustic analysis software (e.g . Raven [35], Luscinia [36]) or packages (e.g .
Seewave [37], warbleR [38], Parselmouth [39]) integrate spectral peak finding and/or F0
estimation methods, using algorithms such as short-term cepstral transforms or
PRAAT’s auto-correlation. These ready-made F0 estimation tools are used in many
bioacoustic studies [40–44], often using PRAAT but also sometimes combined with
manual procedures [45].

For specific bioacoustic purposes, new approaches to F0 estimation were also
developed. This includes training convolutional neural networks to recognise tonal
energy using real or synthetic targets [46]; training with a modified loss function that
enables learning from noisy pseudo-labels [47]; or tuning the YIN algorithm to bird
vocalisations [48]. Another study also reported on a benchmark of numerous F0
estimation algorithms on electro-glottographic signals for bioacoustic applications [49].
However, all of them tested algorithms on a single type of signal or a single taxon, as
opposed to MIR F0 estimation studies that often benchmark performance on diverse
signals to get a sense of an algorithm’s versatility. Working with datasets focused on a
single taxon might result in algorithms being over-specialised, necessitating re-tailoring
or development for each new taxon.

Overall, whether manual or automatic, the widely adopted approach to estimate the
F0 of non-human vocalisations relates to finding the lowest frequency spectral peak
and/or the inter-harmonic distance at each time frame. While in some cases, this leads
to an imperfect measure of vocal organ vibratory speed, it still significantly correlates
with, and is virtually always the same as, F0. Moreover, a large body of literature has
successfully found ecologically relevant acoustic structures using F0 estimation
approaches [12–14,16, 17], supporting the idea that investing time to apply and validate
deep learning tools in order to automate F0 estimation will be greatly beneficial to the
scientific communities that rely on bioacoustics data.

Objectives

In bioacoustics, deep learning already strongly contributes to tasks such as vocalisation
detection/classification [50] or clustering [51], but this technique is not yet widely used
for F0 estimation. In speech and music F0 estimation however, deep learning has
demonstrated both versatility [33,34,52] (i.e. handling a wide diversity of signals) and
robustness to noise [32,53], two important challenges in bioacoustics, as species emit
diverse vocalisations in sometimes very noisy settings.

Thus, it appears that deep learning could improve bioacoustic F0 estimation, but
datasets to both train and evaluate models in this specific domain are lacking. Here we
compile and publish a cross-species dataset of non-human vocalisations with ground
truth F0 contours from previously annotated vocalizations. They come from studies
that were conducted independently from this one, most of the time including a form of
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annotation quality control, and some already published in peer-reviewed journals (see
Supplementary text 1). We also report how both traditional and deep learning
algorithms perform on these data.

With this work, we provide an analysis on different taxa so that practitioners can
make informed decisions of which methods to use, how to apply them, and requirements
in terms of vocalisation characteristics and annotation availability. Additionally, we
hope to i) foster research and development of automatic F0 estimation on signals other
than speech and music, and ii) significantly reduce the time investment required to
track F0 contours of a new taxon.

Multi-F0 versus mono-F0 estimation

In many acoustic scenes, it is possible for more than one F0 to be active simultaneously.
In MIR, pitch estimation is thus divided into two tasks, multi-pitch for which the goal is
to identify all audible (or annotated) F0, potentially multiple in one time frame, and
mono-pitch or melody estimation aiming to produce a single sequence of frequency
values for a given input signal [10].

In bioacoustics, multi-F0 estimation is needed for cases with overlapping calls (which
are common in natural conditions), or for species that are capable of biphony
(generating two independent tones simultaneously, often referred to as F0 and
G0 [54–58]). In order to limit the scope of this work, we benchmark monophonic
algorithms only (BASIC-pitch was designed for multi-pitch estimation but we use it in a
mono-pitch fashion here). The consideration of multi-F0 estimation is left for future
work. For datasets that originally included overlapping calls, we discarded these sections
to keep only those with a single active F0 according to the ground truth annotations.

Terminology

For the data introduced here, one may argue that the term ‘pitch’ would be more
appropriate than ‘F0’, since annotations were conducted by humans and/or machines,
and do not necessarily match vocal fold vibration speed. Nonetheless, the term ‘pitch’
might suggest that annotations describe human acoustic perception, collected from
listening experiments, and the machine- or spectrogram-based annotations might give
different results than perceptual tests. For this reason, we refer to the presented
ground-truth as F0.

To foster transdisciplinarity and since many methods used here originated within the
MIR community, we borrow many terms from the field which are not common in
bioacoustics. Hence, we introduce them in the following, along with a visual illustration
in Fig 1:

• Frame: A short time interval over which the signal is assumed to be stationary and
from which we estimate the spectrum; that is one temporal bin of a spectrogram.

• Voiced frame: A frame containing a voiced sound (e.g . an animal is producing a
periodic sound with its vocal apparatus).

• Voiced section: A temporal window of multiple voiced frames.

• Octave: interval of a factor of two in frequency.

• Semitone: interval of a twelfth of an octave.

• Pitch accuracy : proportion of frames with a predicted F0 that is close to the
reference contour (using a fixed frequency interval threshold such as half a
semitone).

June 3, 2025 5/28



Fig 1. Example of a vocalisation spectrogram indicating different terms used
in F0 estimation. This vocalisation was emitted by an Arctic grey wolf (Canis lupus
arctos ssp.). Orange markers denote annotated ground truth F0 values.

• Chroma accuracy : similar to pitch accuracy, but ignoring octave shifts (e.g . 500
Hz ± 1 semitone is considered accurate for a 1000 Hz F0 in terms of chroma
accuracy).

• Recall : proportion of frames that were predicted as voiced among the frames
annotated as such.

• Vocalisation recall : proportion of voiced calls that were correctly detected. Unlike
recall, this metric is based on correctly detecting at least a third of the voiced
frames within the call [59].

• Specificity : the proportion of frames predicted as not voiced among the frames
annotated as such. Specificity can be chosen here instead of precision as
proportion of silent frames in all datasets remains relatively small.

• Sub-harmonic: A variation that occurs between consecutive cycles of a signal,
leading to a dissimilarity between consecutive periods and a similarity between
non-consecutive periods. In the frequency domain, this phenomenon typically
generates energy at half the F0.

Materials and methods

For this study, we set out to gather, describe and publish a cross-species dataset of
audio vocalisations with corresponding annotated F0 contours, as well as to report on
how different algorithms perform on the task of single F0 estimation. This section starts
by describing the published dataset, both in broad numbers and with fine-scale acoustic
features of its components. Then, we report on implementation details for the
comparison of state-of-the-art F0 estimation algorithms, especially regarding the
training of models under different degrees of supervision.
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Dataset

We contacted researchers who had published studies on measuring the F0 in non-human
vertebrate vocalisations. In addition, we reached out to members of the International
Bioacoustics Council (IBAC) via their mailing list and at the 2023 congress (Oct 27 –
Nov 1, Hokkaido, Japan). The numerous answers allowed us to assemble a corpus of
labeled acoustic data across 14 taxa of mammals and birds, which is described in
Table 1.

Table 1. Specifications for the 14 datasets gathered in this study. Stars (*) indicate datasets that include multiple
species or subspecies.

Taxon # Vocalisa-
tions

Sample
Rate (kHz)

SNR (dB)
mean ± std

Annotation method

canids* (Canis spp.) 2,282 16 5.7 ± 7.2 semi-automatic [60]
spotted hyenas (Crocuta crocuta) 571 8 6.3 ± 6.9 semi-automatic [18]
little owls (Athene noctua) 1,283 4 7.2 ± 4.5 Raven PFC [22]
bottlenose dolphins (Tursiops truncatus) 669 96 5.4 ± 5.8 semi-automatic [21,61]
rodents* (Microtus ochrogaster & Mus spp.) 224,705 250 -5.0 ± 7.0 automatic [62,63]
hummingbirds* (Trochilidae spp.) 13,680 44 5.5 ± 5.7 Raven PFC [64]
Spix’s disk-winged bats (Thyroptera tricolor) 340 400 1.6 ± 3.7 Raven PFC [65]
Reunion grey white eyes (Zosterops borbonicus) 1,174 44 10.6 ± 6.5 Raven PFC
monk parakeets (Myiopsitta monachus) 233 44 7.9 ± 3.2 semi-automatic [66–69]
lions (Panthera leo) 164 16 13.5 ± 2.9 automatic [19]
orangutans (Pongo pygmaeus) 1,548 44 3.0 ± 5.4 Raven PFC [70,71]
long-billed hermits (Phaethornis longirostris) 160 44 7.0 ± 2.6 Raven PFC [72]
dolphins* (Delphinidae spp.) 1,113 192 -7.6 ± 5.8 manual [59]
La Palma chaffinches (Fringilla canariensis palmae) 347 44 7.9 ± 2.6 Raven PFC

Total 250,670 [4; 400]

This corpus combines the results of previous works on bioacoustic signals, each of
which used specific methods to generate F0 ground truths. Some were traced by hand
with custom graphical interfaces (manual), others used automatically estimated F0
contours but corrected them by hand (semi-automatic) and others used fully automated
procedures, either custom or out-of-the-box such as Raven Peak Frequency Contour
(PFC). Note that in the latter case, the operator still annotates the spectrogram with
time × frequency bounding boxes around the F0, which highly limits the potential for
errors. Further details on potential quality controls over annotations are described in
the data description in Supplementary text 1.

This corpus integrates diverse taxa, across mammals and birds, and with diverse
vocalisation properties (Fig 2). It is not an exhaustive set of all sound-producing
species, and the associated results might not be representative for taxa not included
such as frogs or insects for instance. Nevertheless, vocalisations of this corpus range
from infra- to ultra-sound, some are shorter than 0.1 sec and others last several seconds,
some appear to reflect non-linear phenomena (e.g . spotted hyenas vocalisation often
contain sub-harmonics) and others are close to pure tones (e.g . Reunion grey white eyes
vocalisations do not have harmonics). Moreover, across datasets, different signal
acquisition methods were used, including collar-mounted and hand-held directional
recorders for spotted hyenas and hummingbirds, in-lab recording chambers for rodents,
or outdoor far-field recorders for dolphins (see Supplementary text 1 for a complete
description of recording protocols). This strongly affects the resulting signal quality and
consequently how easily the F0 can be estimated.
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Fig 2. Distribution of F0 annotations per taxa. Blue and orange denote mammals and birds respectively, and black
bars show the three quartiles of each distributions. The distribution of modulation rates report on linear F0 slopes between
each annotation points.

The dataset introduced in this study is a conglomerate of previous works from
different researchers. Thus, recording and ground truth characteristics vary. For some
taxa, F0 labels result from a global tuning of automatic procedures, which can introduce
errors, whereas labels for other taxa are the result of fine-grained manual interventions,
which rely on human bias. Nonetheless, publishing such data is beneficial to the
community, especially with a repository that is open to refinements from future works.

Vocalisations characterisation

Prior to estimating F0 values and comparing algorithms, we wish to obtain a
fine-grained description of the dataset, enabling the formulation of hypotheses regarding
signal characteristics that may influence F0 estimation accuracy. Specifically, spectral
properties of vocalisations might help us identify challenges faced by algorithms to
estimate F0 values. In this section, we describe the four metrics chosen for this purpose,
some of which are specific to this study because they are based on annotated F0
contours: the signal-to-noise ratio (SNR), the F0 salience, the overtone-to-fundamental
ratio (OFR), and the sub-harmonic ratio (SHR). Thus, we measure the energy of a
vocalisation both in relation to background noise and in terms of how well it matches its
corresponding annotation.

Note that except for the SNR, all metrics are computed from spectral frames (S), for
which we use Hann windows without padding (window sizes and hop sizes are reported
in Table 3). To reduce effects of background noise and frequency response, similarly to
previous works [73,74], we normalise spectra prior to their analysis (i.e. measuring
salience, OFR and sub-harmonic ratio). The normalisation consists of subtracting the
median of each frequency bin over background segments (not annotated as voiced) and
dividing by the standard deviation. Note that this process is only used for the dataset
analysis, F0 estimation methods are applied to the original audio. Finally, preliminary
experiments have shown that OFR and SHR measurements were only reliable for salient
F0 ground truths: unexpected values such as SHR higher than 1 were yielded if we did
not target salient vocalisations. For this reason, we report only the values of frames
with a salience above 0.6.
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Signal-to-Noise Ratio

A commonly used descriptor of acoustic signals is their Signal-to-Noise Ratio (SNR).
For each vocalisation, we high-pass filter the signal with a Butterworth filter of order
three with a low-frequency cutoff set at the minimum F0 measured for the signal. The
signal’s power is then estimated as the root mean square (RMS) measurement of the
filtered call, which is compared between sections annotated as voiced (Evoiced) and its
surroundings (Ebackground) to yield the SNR. Since during voiced sections vocalisation
signals are mixed to background noise, to isolate their power, we subtract the power of
surrounding sections before computing the ratio (Eq 1). Note that we cannot apply the
logarithm for vocalisations with Evoiced < Ebackground, and therefore we drop these out
of the measurement (an alternative to include them could have been to compute the
signal to noise and signal ratio). Low SNR values are typically expected if the recorder
was placed far away from the vocalising animal, in environments with high background
noise, and/or if the vocalisation is produced softly. We report on SNR modes in Table 1.

SNR = 10log10

(
Evoiced − Ebackground

Ebackground

)
(1)

F0 salience

Similarly to previous work [75], we characterise the salience of F0 contours relative to
background noise. However, for this study, we aim to disentangle contributions of the
fundamental frequency from harmonics. This motivated the design of two separate
metrics, namely salience and OFR. The salience indicates by how much an F0 contour
stands out from its surrounding spectrum. Low salience values are expected in
vocalisations at low SNR and for wide-band / non-tonal vocalisations. We propose to
compute the salience of an F0 annotation as the ratio of the energy in its close
frequency band (set from one semitone below to one semitone above) and the energy of
its surrounding octave. Eq 2 formalises this given a spectrum S, a F0 ground truth f0,
and with numerical values in semitone. If the distribution of spectral energy were to be
uniform, salience would be 1

6 , and if all the energy is contained in the tone surrounding
the F0 contour, salience would be 1.

Salience =

∑f0+1
f=f0−1 S(f)∑f0+6
f=f0−6 S(f)

(2)

Overtone-to-fundamental ratio (OFR)

We use the term overtone-to-fundamental ratio (OFR) to describe the amount of energy
present in the harmonics relative to the energy of the fundamental. To measure it, we
chose a normalised formulation, namely the proportion of energy contained in the
harmonics within the energy of the harmonics and the fundamental combined (Eq 3).
Typically, a pure tone would have an OFR close to 0 whereas vocalisations with strong
harmonics like human speech will have a value close to 1. In this study, we refer to
vocalisations with a high OFR value as ‘harmonic’ and those with a low OFR value as
‘non-harmonic’ (harmonics can still be present but they have less energy than for other
signals).

OFR =

∑N
i=2 S(if0)∑N
i=1 S(if0)

(3)
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Sub-Harmonic Ratio

The Sub-Harmonic Ratio (SHR) proposed by Sun [76] can be used to detect
sub-harmonics in acoustic signals (see also Herbst 2021 [77] for empirical results with
this metric). Given an F0 value, it is computed by taking the ratio between the
sub-harmonic amplitude (at half the F0 value) and the harmonic amplitude (Eq 4).
Following Sun [76], we set N to five. SHR values are expected to approach one for
signals with strong sub-harmonics (having the same amount of energy as the
fundamental), or 0 for signals without any.

SHR =

∑N
i=1 S((i−

1
2 )f0)∑N

i=1 S(if0)
(4)

Distributions of salience, SHR and OFR values are given in Fig 3, and help
understand potential factors that might hinder F0 prediction.

Fig 3. Characterisation of F0 contours with their salience, SHR, and OFR. For more reliable measurements, SHR
and OFR values are reported only for frames with a Salience > 0.6. Horizontal dashed lines delimit dataset groups which are
labelled on the right side. Blue and orange denote mammals and birds respectively, and black bars show the three quartiles of
each distributions.

0.0 0.2 0.4 0.6 0.8 1
Salience

canids
spotted hyenas

little owls
bottlenose dolphins

rodents
hummingbirds

disk-winged bats
Reunion grey white eyes

monk parakeets
lions

orangutans
long-billed hermits

dolphins
La Palma chaffinches

0.0 0.2 0.4 0.6 0.8 1
SHR

0.0 0.2 0.4 0.6 0.8 1
OFR

S
a
lie

n
t

H
a
rm

o
n
ic

S
a
lie

n
t

N
o
n

-h
a
rm

o
n

ic

N
o
n

-sa
lie

n
t

H
a
rm

o
n
ic

N
o
n

-sa
lie

n
t

N
o
n

-h
a
rm

o
n

ic

Dataset grouping

To ease the reading of results across this dataset of 14 taxa, we grouped them by trends
of contour characteristics (salience and OFR appeared to impact performance the most).
We thus split taxa into four groups based on the median values of salience (0.6) and
OFR (0.3). The resulting groups are presented in Table 2

Experimental framework

The variety of signal characteristics present in this corpus required specific
pre-processing parameters to be set for each dataset, which are described in Table 3.

Signal slow down / acceleration

Slowing down or accelerating a signal by a given factor (i.e. artificially changing the
sampling frequency) is a straightforward way to scale all frequencies by that same factor.
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Table 2. Dataset groups attributed to each taxa based on their signal
characteristics. Taxa with a median salience higher than 0.6 are considered salient,
and taxa with a median OFR higher than 0.3 are considered harmonic. Dataset groups
are delimited by dotted lines in Fig. 3.

Low salience High salience
Low OFR dolphins, La Palma

chaffinches
bottlenose dolphins,

rodents, hummingbirds,
disk-winged bats, Reunion

grey white eyes
High OFR monk-parakeets, lions,

orangutans, long-billed
hermits

canids, spotted hyenas,
little owls

Table 3. Processing parameters chosen for each dataset. The window size, defined before signal slow down or
acceleration, is used without padding, only for spectrogram visualisation, vocalisation characterisation, and for the p-YIN
algorithm which operates on a user-set frame length. Time steps are set as a fraction of the window size, and used for
spectrogram generation, vocalisation characterisation, annotation resampling, and also F0 prediction (F0 time series are
resampled via linear interpolations using the mir eval package [78]). A slow down factor of one is neutral, and a factor below
one is an acceleration.

Taxon Window size (ms) Time step Slow down factor

canids 64 1/8 1
spotted hyenas 256 1/8 1
little owls 13 1/8 1
bottlenose dolphins 11 1/8 20
rodents 2 1/8 50
hummingbirds 12 1/16 5
disk-winged bats 1 1/16 20
Reunion grey white eyes 23 1/16 5
monk parakeets 12 1/16 3
lions 128 1/8 0.5
orangutans 47 1/8 1
long-billed hermits 12 1/16 5
dolphins 8 1/8 20
La Palma chaffinches 23 1/16 5

For instance, if a 440 Hz tone was recorded at 44 kHz and we play it at 22 kHz, its F0
will shift to 220 Hz. This comes in useful for humans to listen to ultra-sonic sounds, or
when using models that operate within a fixed frequency range like in this study.

Indeed, many of the methods that we evaluate were designed for signals within the
frequency range of human production and perception. For instance, the CREPE and
PESTO neural networks are trained as classifiers (as opposed to regression models),
with a fixed output dimensionality, and with each output bin corresponding to a specific
frequency (for PESTO: three bins per semitone from 27.5 Hz to 8 kHz; for CREPE: 5
bins per semitone from 32.7 Hz to 2 kHz). This presents challenges for detecting F0
with these algorithms for vocalisations that fall outside of this range. For instance,
rodents or dolphins emit ultra-sonic vocalisations (above the human hearing range), and
others such as lions emit close-to-infra-sonic vocalisations (Fig 2).

To be able to use the pre-trained CREPE, BASIC-pitch and PESTO models for
ultra- and infra- sonic vocalisations, we slow down or accelerate signals to shift them
into a human perceptual frequency range. The signal samples remain unaltered, but the
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sample rate is modified by dividing it by a fixed factor. As an example, the rodent
corpus was sampled at 250 kHz with vocalisations between 10 and 100 kHz. With a
slow down factor of 50, we set the sampling frequency to 5 kHz for vocalisations to lie
between 0.2 and 2 kHz. Chosen slow down factors for each taxa are specified in Table 3,
with a factor of one being neutral, and a factor below one being an acceleration.

After slowing down or accelerating the signal, for algorithms such as CREPE that
work with a fixed sample rate, the signal is resampled using the bandlimited sinc
interpolation method [79]. As a post-processing step, we multiply predicted frequencies
by the slow down factor before evaluating them against ground truths.

Benchmarked algorithms and model training

In this study, we compare different algorithms and deep learning models used in speech,
music and/or bioacoustic F0 estimation: PRAAT, p-YIN, CREPE, PESTO, and
BASIC-pitch; which were introduced in the introduction.

The CREPE and PESTO deep neural networks have been trained for pitch
estimation in music, but we wish to investigate how their performance might evolve if
we train them for bioacoustic F0 estimation. Wishing to highlight the effect of training
data on model performance, we follow the published training procedures to control for
performance variation due to other factors:

• CREPE [32] is a supervised model with a classifier architecture. It takes the raw
waveform as input, on which six convolutional layers are applied, before a
fully-connected layer outputs confidence values predicting if frequency bins
correspond to the F0 ground truth (there are 360 frequency bins between 32.70 Hz
and 1975.5 Hz, each covering 20 cents). Following the original publication, we
train the same model architecture, iteratively minimising the binary cross entropy
between predictions and ground truths, using a ADAM optimiser and a learning
rate of 0.0002. We use CREPE’s pytorch implementation [80], initialising weights
with that of the published model trained on musical signals (this was motivated
by the observation of better performance when doing so).

• PESTO [33] is a self-supervised model that learns without ground truth labels. It
does so by pitch-shifting training examples, and predicts F0 values from both the
original and shifted versions (based on CQT representations of signals). During
training, the model optimises a specific loss function which expects F0 predictions
to have the same difference as the known shift (i.e. equivariance objective). As
the algorithm does not learn actual F0 values, after training, synthetic signals of
known frequency are used to produce a calibration that permits F0 recovery.
Again to minimise confounding factors, we used PESTO’s public implementation,
using the same architecture and ADAM optimiser configuration. Only a few
modifications to the original settings were necessary to achieve a functional
learning, namely increasing the minimum CQT frequency to deal with small files
(to represent low frequencies, the CQT needs large temporal windows), and
increasing the range of the frequencies used in the post-training calibration).

Given these two model architectures and training protocols, each state of the art in
either supervised or self-supervised F0 estimation in music, we test how training them
with bioacoustic data might improve their performance in this domain. For this, we
emulate different scenarios of data availability described in the following (by ‘target’ we
refer to the taxon that a given model will be evaluated on):

• Self-supervised : In this scenario, a model is trained without the need of annotated
F0 contours, which is the most common case when engaging in bioacoustic
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analysis. Here, we train PESTO on the vocalisations of the target taxon without
using their associated F0 ground truth. Therefore, the size of the training set is
the number of available vocalisations reported in Table 1. Since no labels are
used in training, vocalisations from the same taxon are used to evaluate model
performance post-training.

• Supervised on other taxa: In this scenario, we test the generalisation capacity of a
supervised model trained on many taxa, by measuring how it behaves on a new
one. With this, we assess the feasibility of a generic bioacoustic F0 estimation
model that doesn’t need retraining. Here, we train CREPE on a dataset
combining all taxa except the target. To mitigate risks of over-representing taxa
with many vocalisations (e.g . rodents), we limited the number of vocalisations per
taxon to 1,000. Once the model is trained, its performance is evaluated on the
target taxon that was retained from the training set.

• Supervised on the target taxon: In this scenario, we test how well a supervised
model performs if it was trained on its target taxon. It is expected to attain the
best performance, but is only applicable in a limited number of use cases: when
researchers have access to F0 annotations for the taxon they want to analyse. We
thus train CREPE on the target taxon, splitting the data in a 5-fold manner to
dissociate training from evaluation data. Therefore, here training set sizes are 80%
of the number of available vocalisations reported in Table 1.

Performance computation

We use the mir eval package [78] to compute recall, specificity, pitch accuracy and
chroma accuracy for each vocalisation independently, before averaging them per taxa.
For pitch accuracy and chroma accuracy, we consider an F0 prediction to be correct if
closer than half a semitone from the ground truth [10] (preliminary experiments with
more permissive thresholds did not significantly change results).

The frequency resolution of F0 annotations varies across datasets, with particularly
small sizes of the Fourier windows or specific manual label procedures that may lead to
coarse quantisation of F0. To avoid biased results we ensured that the threshold used
for evaluating pitch and chroma accuracy is larger than any of the F0 quantisation.

The recall and specificity metrics reflect an algorithm’s behaviour in terms of voicing
detection (i.e. the algorithm’s capacity to differentiate between voiced and non-voiced
frames). Some algorithms such as p-YIN compute a voicing probability, and others a F0
confidence value. Therefore, to generate a binary voicing prediction, we apply a
threshold on these values. For each taxon and algorithm combination, we set this
threshold to the balance point of the Receiver Operating Characteristic (ROC) curve
(i.e. the point with equal recall and specificity). Threshold values are reported in
Supplementary Figure 1.

For some detection tasks, the specificity metric can be over-optimistic as compared
to the precision. This occurs for imbalanced datasets that have many more negative
labels than positive ones (e.g . for voicing detections, having much more background
sections than voiced sections). Since the specificity normalises the proportion of true
negatives by negative labels, specificity scores might be high even with a significant
proportion of detection errors. The precision however, normalises by the number of
positive predictions, and does not suffer from this bias. In our case, amounts of positive
and negative labels are similar, hence we report on the specificity metric which is more
commonly found in the F0 estimation literature.
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Results

After analysing per-taxon vocalisation characteristics, and having trained models under
varying levels of supervision, we run F0 estimation on the whole corpus. We visually
demonstrate this with randomly sampled examples of predictions in Fig 4.

In this section, we detail how the different algorithms and neural network models
behave on each taxon, and this for different performance metrics. Throughout the text
and figures, we refer to the out-of-the-box CREPE and PESTO models trained on
musical signals as ‘crepe-music’ and ‘pesto-music’ respectively, PESTO models
self-supervised on their target taxon as ‘pesto-bio’, CREPE models supervised on
their target taxon as ‘crepe-consp.’ (for conspecific), and CREPE models supervised
on other taxa than their target as ‘crepe-heterosp.’ (for heterospecific).

F0 estimation accuracy

We report on the accuracy of estimating the F0 for each algorithm in Fig 5 with the
pitch accuracy and chroma accuracy (tolerating octave errors).

Overall, the dataset grouping categories seem to explain most of the variations in
performance. For taxa with a salient F0, neural networks trained on bioacoustic signals
perform well (pitch accuracy > 0.69 and chroma accuracy > 0.74 for pesto-bio,
crepe-heterosp. and crepe-consp.). Interestingly, for taxa with salient contours,
the type of supervision (being supervised on the target taxon or being self-supervised)
has a relatively small impact on performance. This is shown in Fig. 6, comparing
crepe-consp. and pesto-bio. Also, for canids and little owls, the self-supervised
model performs slightly better than the model supervised on the target taxon. This
could indicate label noise (i.e. annotation errors) and/or overfitting. Typically for the
latter, the model finds an over-specialised relationship between inputs and correct
predictions that works well on the training data, but does not generalise to new
examples. However, for taxa with non-salient vocalisations, the self-supervised training
procedure becomes counter productive (pesto-music outperforms pesto-bio, Fig. 5),
suggesting that the equivariance objective relies on contours with strong energy to
function correctly.

As for the other algorithms, on salient contours, PRAAT seems to be subject to
octave errors for vocalisations with strong harmonics (gap between pitch and chroma
accuracies), but still shows the most reliable performance as compared to p-YIN or
some neural networks trained on musical signals (BASIC and pesto-music).
Comparisons between crepe-music and crepe-consp. (Fig. 6), or between
crepe-music and crepe-heterosp. (Fig. 5), show that training neural networks on
bioacoustic data mostly improves performance in F0 estimation. This is true even for
relatively small datasets such as for disk-winged bats (272 vocalisations used in
training). However, it is worth noting that the only taxon for which crepe-consp. has
lower performance than crepe-music (although by a small margin) is the taxon with
the lowest amount of annotated vocalisations (128 vocalisations in the training set).

For the less salient vocalisations, performance variability increases. Supervised
training on the target taxon (crepe-consp.) still leads to the best results, but except
for the long-billed hermits, models trained on other taxa (crepe-heterosp.) remain
relatively close (their median pitch accuracy are 0.67 and 0.63 respectively). We show
this relationship in Fig. 6, in which we compare the pitch accuracy of crepe-consp.
with other methods. Despite being relatively close in performance, the superiority of
crepe-consp. over crepe-heterosp. demonstrates that in general, for training, data
proximity (training with data that is similar to the application domain) is more effective
than data quantity.
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Accuracy as a function of salience

As salience appeared to be the most impacting vocalisation characteristic on F0
estimation accuracy, we report on pitch accuracy as a function of salience in Fig 7. To
characterise each vocalisation, we used its average salience and average OFR. Results
here are reported across all taxa, for vocalisations with an average OFR above and
below 0.5 separately.

The salience metric appears to be a strong indicator of how well an F0 can be
estimated. Indeed, the two almost follow a perfect identity relationship. This
representation also confirms that for salient vocalisations pesto-bio performs well,
similarly to supervised models, but a performance gap appears for the fainter contours
with low OFR.

At low salience values, a tendency appears for lower performance with non-harmonic
vocalisations as compared to harmonic ones, especially for p-YIN, BASIC and PESTO.
This phenomenon suggests some reliance on harmonic structures to correctly estimate
F0 values. Furthermore, Fig. 7 shows that supervised models trained on bioacoustic
data (crepe-consp. and crepe-heterosp.) generally perform better than other
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algorithms regardless of their harmonicity or F0 salience.

Voicing detection

We report on the capacity of the different algorithms to correctly discriminate between
voiced and background frames in Fig 8. Across algorithms, vocalisation OFR does not
appear to impact performance, but their salience does.

For the most part, all algorithms perform similarly in terms of voicing detection,
except BASIC-pitch. This is probably due to the fact that an onset matrix is normally
used to predict note activation, thus the distribution of confidence values used here
might not allow a good discrimination between voiced and background frames.

In their development of automated whistle contour extraction, Roch et al. [59] also
reported on vocalisation-wise recall (the proportion of vocalisations with a recall of at
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Fig 8. Voicing detection performance for each algorithm and taxa (following the dataset grouping). The recall
metric is averaged across all temporal frames, whereas the vocalisation recall gives the proportion of vocalisations with at
least a third of its frames detected as voiced. Boxes extend from the first quartile (Q1) to the third quartile (Q3) of the data,
with a line at the median, and whiskers extend from the box to the farthest data point lying within 1.5x the inter-quartile
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least 33%) to inform on the potential use of such algorithm for vocalisation detection.
As shown in Fig 8 for this metrics, to the exception of BASIC-pitch, all scores are
relatively high, with crepe-consp. being close to the top-line performance for almost
all taxa.

We report optimal threshold values that lead to these voicing detection performance
in Supplementary Figure 2 An important insight brought by this visualisation is the
amount of variability of this threshold depending on the taxon. Specifically comparing
crepe-heterosp. and crepe-consp., we see that training on a variety of taxa makes
that the model yields a more stable confidence prediction, which implies less
taxon-specific tuning to find the optimal voicing confidence threshold.

Temporal smoothing of F0 predictions

In the performance comparison conducted so far, we focused on instantaneous F0
estimation without temporal smoothing. Temporal smoothing such as the Viterbi
algorithm [53,81] is commonly used to track F0 values, as using priors from salient parts
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of a vocalisation might help in gaining accuracy for its fainter parts. We ran the
crepe-consp. models applying a public implementation of the Viterbi algorithm [32],
and compare scores in Table 4. Overall, temporal smoothing lead to similar result or
was slightly detrimental. This might be due to the public Viterbi implementation used
being specifically tuned for musical signals [32], for which typical frequency modulation
rates differ from that of non-human vocalisations.

Table 4. Pitch accuracy for the crepe-consp. model with and without temporal smoothing.

Taxon Without Viterbi With Viterbi Gain by using Viterbi

canids 0.73 0.74 0.004
spotted hyenas 0.94 0.91 -0.028
little owls 0.89 0.87 -0.019
bottlenose dolphins 0.93 0.91 -0.019
rodents 0.89 0.90 0.002
hummingbirds 0.63 0.63 0
disk-winged bats 0.73 0.73 0
Reunion grey white eyes 0.71 0.71 0
monk parakeets 0.30 0.30 0
lions 0.47 0.48 0.004
orangutans 0.51 0.51 0
long-billed hermits 0.42 0.40 -0.011
dolphins 0.24 0.24 0
La Palma chaffinches 0.28 0.28 0

Discussion and Conclusion

Estimating the F0 of non-human vertebrate vocalisations is crucial for bioacousticians
to unveil structures in these signals, helping to address ecological and evolutionary
questions. Automating this task would help to reach comparative scales for these
measures (e.g . at individual or population-level) given how prohibitively time-intensive
it can be to manually trace frequency contours.

With this study, we propose to take advantage of deep learning models in this
regard, after they provided significant advances in the speech and music communities.
Overall, performances are rather low as compared to what is common in the speech or
music communities, in which pitch accuracies are most often above 95% [32, 33]. Several
facts might explain this observation. Speech and music F0 estimation benchmarks are
often with data recorded indoors if not fully synthetic, with a relatively high SNR
(microphones being placed in proximity to sound sources and in quiet environments),
and it took significant research efforts for algorithms to reach such scores despite an
extensive knowledge of production mechanisms and great experimental control. The
algorithms tested here result from this effort but were not designed to work in
bioacoustic conditions, which include vocalisations that might lack harmonics, often
recorded at a distance and outdoors, in the presence of other noise sources.

Scores are low as compared to tests on indoors near-field speech or music, but they
are in most cases above twice the random baseline performance (0.8 % for the chroma
accuracy), and crepe-consp. performs above three times the random baseline for all
taxa. In this sense, we propose these automatic algorithms as a baseline for further
developments, without which they are only reliable for signals with a relatively high F0
salience / SNR.
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Nonetheless, our results demonstrate that deep learning models systematically
outperform traditional methods in bioacoustic F0 estimation (Fig. 6), even for taxa not
seen during training. Using this technology would therefore be advantageous to the
field, similar to its benefits in other tasks such as vocalisation detection or classification.
One of the advantages with training models is for instances where the first overtone has
a stronger energy than the F0, which typically triggers harmonic jumps with traditional
algorithms (e.g . this can occur in the effect of formants, a major component of
speech [82]). We see from the median scores in Fig. 5 that supervised models
(crepe-consp. and crepe-heterosp.) have the smallest difference between pitch and
chroma accuracies. This suggests less confusion between the first overtone and the
fundamental, and thus that explicitly guiding models to predict the F0 even when the
first overtone has a higher energy is effective.

Moreover, our experiments with self-supervised models show that knowledge can be
gained even without labels, with scores being comparable to that of supervised models
for species with salient vocalisations (Fig. 6). This is especially relevant since the lack of
annotated data is a major obstacle in using deep learning for bioacoustics [50]. We
expect that a semi-supervised training procedure, with only few labelled examples,
would allow to improve training with less salient vocalisations, which so far pose
challenges as compared to more salient ones. In this sense, combining training
paradigms or algorithms outputs could be a lead for further developments [11].

In our corpus characterisation, we propose a F0 salience metric which, based on
simple spectral measurements, informs on the potential reliability of algorithms at
estimating the F0. The visualisation of performance as a function of salience (Fig. 7)
demonstrates that for vocalisations that are highly tonal and with low background noise,
algorithms can reach an accuracy of 90%, but this performance drops down to 35% with
the more ‘noisy’ vocalisations (whether they are less tonal, exposed to more background
noise or both). The lion dataset for instance has the highest mean SNR (Table 1),
unsurprisingly since microphones were collar-mounted, but calls seem to contain
deterministic chaos [26], which makes their salience distribution relatively low (Fig. 3).
For these data, scores are around 50%, and the performance gap between PRAAT and
deep learning models is relatively small (about 5% depending on the model). We
encourage bioacousticians to evaluate their data in this regard, in order to anticipate
the potential viability of automated F0 estimation for their specific use case. Future
methodological research on bioacoustic F0 estimation should focus on vocalisations with
low salience, as they are the most challenging to track.

For some taxa, the BASIC-pitch model gave reasonable performances, without
having been trained on non-human signals. With such an architecture designed for
polyphonic music [34], there is a potential for analysing biphonic and overlapping calls,
which this study does not tackle. It should be noted that pitch classifier architectures
such as CREPE and PESTO could also be modified for multi-pitch tasks [33], and that
their last layer’s activation can already inform on multiple F0 candidates. Regardless of
the chosen approach, F0 trackers will only be fully ready for real-world applications
when they are capable of managing multiple simultaneous F0s, as many bioacoustic
applications require. Despite the fact that the proposed dataset contains only mono-F0
annotations, mixing up signals could easily emulate multiple-F0 scenarios, and thus this
corpus could still be suited to develop and evaluate multiple-F0 trackers.

With the hope of fostering further methodological developments, we publish all
acoustic signals and their associated F0 ground truths in an open repository. Being
aware that some of the dataset’s ground truths might not perfectly match the actual
oscillation frequency of vocal organs, since both manual and semi-automatic F0
annotations can be biased [49,59], we believe this corpus can still help in automating
what a bioacoustician would annotate as F0 in a signal, and hence are worth
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investigating. Indeed, if one generic algorithm can yield the same F0 values as one that
was specifically tuned for some signal, and if it can replicate what an annotator would
have considered as F0, it will help researchers save time and extend their analysis to
more vocalisations. Nonetheless, users of such methods should be aware that F0
predictions can be corrupted by numerous phenomena such as non-linearities or
background noise, and do not guarantee an accurate measurement of vocal organ
vibration speed.

Nonetheless, before benchmarking more algorithmic procedures, future work using
this dataset should focus on refining heuristics to filter label noise (especially resulting
from automatic annotation procedures). Otherwise, fine-grained evaluations may be
unreliable. To facilitate the application of our current experiments in other studies, we
provide the Python code necessary to train and utilise pre-trained F0 estimators. The
published Python interface allows to infer F0 values using a CREPE model trained on
the whole dataset published here. Depending on the signals they wish to analyse, users
can easily choose another model trained on a specific taxon, or set slow down /
acceleration factors (to deal with infra- or ultra-sounds, or with rapid frequency sweeps
such as bird trills), prediction time step, or prediction post-processing (among argmax,
weighted argmax, or viterbi). Specifically, such tool can facilitate a large range of
studies on non-human vocal behaviour, including to characterise frequency contours at
the scale of species or communities (vocal repertoires), across individuals (individual
signatures), or within individuals (across behaviours or during development).
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Data availability

The Python code used to reproduce experiments are available in an open source
repository2. It shows all packages used, in which version, and gives implementation
details to evaluate existing algorithms or train deep learning models. Besides, the
weights of models trained for this study, along with a ready-to-use Python interface, are
also made available for researchers to use them in their own applications.

The data are accessible through this repository
https://doi.org/10.5061/dryad.prr4xgxw8. The whole dataset is structured in a
uniform way, with a sound file cut around each vocalisations (with some non-voiced
padding), and a text file containing a list of time × frequency annotated values.
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